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GUIDANCE EQUATIONS FCOR QUASI-OPTIMUM SPACE MANEUVERS

By D. Jd. Jezewski
SUMMARY

Approximate time-optimum guidance equations for planetary ascent and de-
scent trajectories at constant thrust are derived for a flat-body two-
dimensional case. No aerodynamic forces are considered. In addition, this
case was extended by introducing power series to simulate the deleted terms
of the round-body solution. A power series in time was chosen to retain the
form of the guidance law. The resulting transcendental equations are not ex-
plicit in the control variables; hence an iterative scheme is used to solve
the conditioned equations for the required control.

Trajectories resulting from this set of equations are compared with the
strict optimum for a number of cases to determine the proximity of the solu-
tions. The results match well for both state and control variables in the
cases considered.

The guidance application was investigated by using the analytic solution
to steer an exact integrated model. A comparison of these results with an
optimum solution for ascent and descent trajectories shows good agreement.

To demonstrate its utility as a trajectory scanner, the technique is ap-
plied to the investigation of lunar landing from an elliptic transfer orbit.

INTRODUCTION

The requirement for optimum trajectories in preliminary design work has
steadily increased in the past few years. The chief deterrent to the solution
of the nonlinear differential equations has been the lack of a process which
would converge rapidly to the desired boundary conditions. The first-order
rerturbation techniques used in convergence processes normally work well in
the vicinity of the solution where the linearity assumption holds true, but
they are usually unpredictable in areas not near the solution. These, unfor-
tunately, are the areas most frequently encountered.

An analytical scheme which provides reasonable approximations to the
optimum solution would be of significant value, first, as a scanning technique
for providing rapid estimates of optimum performance and, second, as a method
of determining approximate initial values for the true optimum solution. The
use of such a technique as a guidance scheme also has possibilities if the so-
lution time is not unreasonable and if the errors generated by the approxime-
tions to the true dynamic equations are not excessive.



The present paper deals with an analytical technique derived by operating
on a set of linearized two-body eguations with the calculus of variations to
determine a guidance law. The planar case, in which aerodynamic forces are
neglected, is treated. The solution differs from that derived in reference 1,
in that for the present paper a constant thrust rather than a constant accel-~
eration is assumed. The equations are first reduced to a flat-body set by
allowing the radius to approach infinity. By integration, three simultaneous
transcendental equations in three unknowns can be derived from this set of
equations. Trajectories resulting from this set are compared with optimum
trajectories to determine what errors are present and which terms, deleted by
the flat-body approximation, are the principal contributors to the error.
Suitable approximate expressions are introduced to the flat-body set of equa~
tions to simulate the deleted terms in an attempt to reduce these errors. The
equations are again integrated, and the results are compared with the optimum
for a number of trajectories. The scheme is tested as a guidance technique by
using the analytic solution as a feedback to the exact integrated model to de-
termine the speed of solution and the penalty incurred as compared with the

optimum.

SYMBOLS
A constant defined by equation (20)
al,ae,...,an coefficients of time series
aij elements of partial matrix
8,8, components of acceleration defined by equations (24) and (25),

ft/sec2

Cl’CE’CB’Ch initial values of Lagrange multipliers, radians/sec

c effective exhaust velocity, ft/sec
Fl,Fg,F5 transcendental functions

f function defined by equation (Al)
G function defined by equation (A2)
g gravitational acceleration, ft/sec
H modified Hamiltonian

hl’h2""’h coefficients of time series



I
sp

AV

performance index

specific impulse, sec

constant defined by equations (22) and (23)
function defined by equation (21)

boundary vector constraint

mass of wvehicle, slugs

functions of time

functions of time

state vector

radius to vehicle from center of body, ft

radius of the reference body, ft

thrust, 1b
time, sec

components of total velocity in x and y directions,
respectively, ft/sec

total velocity, ft/sec

characteristic velocity, ft/sec

weight of vehicle, 1b
rotating coordinates of mass particle, ft

distance from origin to surface of body, ft

tangent of ©

functions defined by equations (19) and (18), respectively

flight~-path angle, deg
increment of time, sec

change in total velocity, ft/sec



AVC change in characteristic velocity, ft/sec

€4 tolerance on time-to-go
€g tolerance on initial pitch angle
0
€y tolerance on final pitch angle
1
il true anomaly
¢ pitch angle, deg, or thrust angle with respect to x-axis,
radians
-,
8(t) control vector

Kl,KE,KB,Xu Lagrange multiplier, radians/sec

M normalized mass ratio, q/mo

v constant Lagrange multiplier

Oy 0p; Oy functions defined by equations (c2k), (ca5), and (C26),
respectively

P | initial thrust acceleration, T/mo, ft/sec2

wl,wa functions defined by equations (36) and (C27), respectively

Subscripts:

0,1 initial and final values of state and control variables

A analytic quantity

I integrated quantity

i,3 partial derivative indices

m order of correction

min minimum

n nth order term of time series



Superscript:

T transpose

Operators:

(") time differentation
5( ) variational operator

FORMULATTION OF THE PROBLEM

The mathematical model employed in this investigation is a mass particle
with two degrees of freedom referred to a set of rotating coordinates with
the x-axis alined along the local horizon. The axis system and the associated
notation are illustrated in figure 1.

The equations of motion for this model are

X =u (1)
y=v ' (2)
u = 3 cos § - uv/r (3)
x}=§sine_g+u2/r (%)
where
Lo=1 + pt (5)
b = m/mg (6)
g = go(rb/r)e (7
r=r -y (8)

b s
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Trajectory

Figure 1l.- Coordinate system and angle definition.

The wvehicle is assumed to have a constant thrust and mass flow rate. The
angle © 1s the control variable.

The final time tl was selected to be minimized since under the pre-

viously mentioned assumptions it will yield minimum fuel consumption.

If in equations (3), (&), and (7), r, 1s allowed to approach infinity,

the coupling effects vanish and the gravitational acceleration approaches its



surface value g The following flat body equations result:

x =u (9)
y=v (10)
u = E-cos o (11)
C e )

v = 7 sin 6 - g, (12)

The following pitch-angle relationship (ref. 1) is obtained when the
calculus of variations is applied to this set of equations and the final range
is allowed to be free.

¢, - C.t
. tan g = —5—5—i3— (13)
3

The derivation of the guidance law (eq. (13)) is given in appendix A.

The solution is now entirely specified, because when the constants
02/05 and 04/05 are given, the control variable is specified; and

equations (9) to (12) may be integrated to yield a solution. To determine
a unique solution, the constants € must be found as functions of the de-
sired boundary conditions. This result is accomplished by integrating

equations (9) to (12) between the bounds specified at t =0 and t = t,.

The constants CM/C5 and CE/C5 are obtained by evaluating equa- 1
tion (13) at the boundaries and yield

c, )
—-— = tan ©
C5 0 5
(14)
S@ B tan eo - tan el
Cc, t
3 1 y

where 6(0) =9, and e(tl) =9

0 1°
Integration of equations (9) to (12) results in the following three sim-

ultaneous transcendental equations in the three unknowns eo, el, and tl.



. W) %
p'lvl - p,yl - go‘tl 1+ - i — (cp sec el - A) =0 (15)
B
{7 2 K tan + K sec §
LSBT P f1 ¥ e h
Y1 T P1¥o 24 1 ‘2 €e\tan 0. + K sec ©
1 0 0
sec © K@a
1 1 _
+ Koo2<sec 0g - " > - (ul - uo> =0 (16)
1 2
1/2
1/2 kK - awp. - a, Kk/'7 sec 8
Kk % 2 1
- -0 (1)

—_— (u - u ) - log
P L 0 © (k - = O Kkl/2 sec eo>p,l

The integrations and associated transformations are indicated in appendix B.

In equations (15) to (17), .
Wt 8
%o = (%an 6, - ten eoj (18)
@ = 1- a, tan 8, (19)
Ao %; (vo - byg) + @ sec 8 (20)
2 2
k = al + GE (21)
- n T
K =1 (-23952> (22)
- T on
K = -1 <2< 6 < 2) (23)

Because the control quantities tl, eo, and el occur implicitly in this

- set of equations, it is impossible to solve for them directly. Since the
equations are transcendental, a first-order perturbation technique (ref. 2) is
utilized to force the solution to converge. This technique, which generates a
partial matrix, assumes that a solution exists if the matrix of partials has

8



an inverse. This convergence technique and the associated partial derivative
matrix are given in appendix C.

Figures 2(a) and 2(b) illustrate the errors of this solution as compared
with an optimum integrated round body for different values of the constant 8g:
It should be noted that the errors generally decrease with increasing T/W
1 OC(T/WO) -1 and the surface inte-

grated over approaches a flat body as the burning time approaches zero.

This follows logically since burning time <

The guestion of what can be done to improve this solution (indicated in
figs. 2(a) and 2(b)) without destroying the analytic properties of the problem
is now posed. Certainly, the errors are the result of neglecting the cross-
coupling effects and setting g equal to a constant.
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Figure 2.- Flat-body error for a launch to lunar orbit. ISP = 420 sec.
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Figure 2.- Concluded.
Figures 3(a) and 3(b) illustrate time histories of the terms

uv/r (24)

o]
Il

a_ =-g+u/r (25)

for an optimum launch to lunar orbit as compared with those of the flat-body
approximations. The displacement between the curves in figures 3(a) and 3(b)
represents the horizontal and normal acceleration errors of the flat-body

2
-approximation and amounts to a maximum of 5.5 ft/sec for the normal component
at the terminal point. The horizontal acceleration term au for optimum time
descents or ascents from orbit can be considered to have only a second-order

effect. For the case illustrated, a launch to lunar orbit, the maximum value

10
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Figure 3.- Comparison of solution obtained by using analytic and exact solu-
= 315.0 sec.

tions for launch to lunar orbit. T/WO = 0.6; Isp
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Figure 3.- Concluded.

of this term amounts to less than 0.2 ft/secg.

320

Therefore, the guantity a
accounts for the largest portion of the observed error. v

To offset the errors, functions are defined in the form

n
hn+l b
0

1
a =
u

1);

12

(26)



av = }: an.+l tn (27)

which have the same values as the functions defined in equations (24) and (25)
at the two bounds. The introduction of a function a, = av(q), where q is

any of the dependent variables, would necessarily complicate (if not completely
destroy) the guidance law stated in equation (13). A time series is accept-
able because it will not alter the guidance law but will change the trans-~
versality condition of the calculus of variations.

Based on this analysis, equations (1) to (&) are

X =u (28)
y=v (29)
u=2cos g - Ej h " (30)
T n+1
n=0
1

C n
v = - sin § + Ez 8 © (31)

n=0

where, from equation (13),

sin g = N1/2
(l + z ):

cos § = ——K217§ (32)
(l + z )
tan o = 2z )

Integrating these equations as outlined in appendix B results in the
following three simultaneous transcendental equations. The method of solution
of these equations is outlined in appendix C.

13



) ! a_ +ltln+l Q.tl( ni1)|
Wy Wo = }: n+1 1+ n+ 2 - = (g sec o1 - A) =0 (53)
n=0 B
1/2- k - a - Kou2 kl/2 sec 91
(u - Uy *+ wi - log 75 =0 (34)
Py k -0y - Kﬂ? k sec § )pl
l tan 6, + K sec 0
.2 + n+l l *Act 1o 1 1
Wt Yo = 71 wrL) (ord) | - MA%Y ok |18\ T 6, * K sec 6,
=0
sec el Kua
+ Ka2 sec e " - Uy * Wi) =0 (35)
1
where L hn+ltln+l
ho= Z Tl (36)

The required number and the evaluation of coefficients to simulate suffi-
ciently the optimum round body trajectories must be determined. Obviously,
the problem is reduced to a flat body if only the n = 0 term is retained
and the coefficient h; d1s chosen to be O. Consider a case where the con-
trol program for the integrated and the analytic solutions are identical in
time. As higher order terms in n are introduced to the flat-body solution,
the instantaneous accelerations and hence the state variables of the analytic
model would necessarily converge to those of the integrated solution. If the
control program of the analytic model (eq. 13) is considered an off-nominal
solution, the above qualitative argument implies the following generalization.
The degree of success in utilizing this analytic technigue to simulate optimum
trajectories depends on the success in simulating the deleted accelerations of
the flat body with power series in time.

For a case of launch to lunar orbit (figs. 3(a) and 3(b)), it is apparent
that the polynomials must be at & minimum cubics and certainly of higher order
if greater accuracy is desired. This minimum solution necessitates four co-
efficients. The results of using this truncated series to simulate the deleted
accelerations of the round body are indicated in figures 3(a) and 3(b). A4s
was stated above, two values of & and a, (egs. (24) and (25)) are known.

by their evaluvation at + =0 and t =+t Two more solutions are required to

1
evaluate the four coefficients of each series. It is apparent that once the

trajectory progresses beyond a few integration steps in a guidance problem,

14




the past history of the dependent variables will yield the required two addi-
tional solutions. At the initiation of the trajectory, the following technique
is used to evaluate the unknown coefficients. The derivatives of equa- i
tions (24) and (25) with respect to time are

. [v(fl -8 )+ ux}:l
; ’ ) (37)
;o [2uﬁ + v(g - a;ﬂ

These equations and equations (1) to (8) are integrated either backward or
forward in time twice by a small increment At +to define the additional co-
efficient in equations (26) and (27). These two solutions will contain an
error, the magnitude being proportional to the uncertainty in the pitch angle
® at t = 0. This error in the coefficients is reduced by cycling through
the algebraic equations and integrations until the coefficlents converge to a
set of values consistent with the computed value of the pitch angle.

RESULTS AND DISCUSSION

Examples of results using the equations derived in this report are shown
in an attempt to indicate the broad usage to which this analysis applies. An
IBM type 1620 electronic data processing machine was used for the computations;
the solution time for a typical boundary-value problem, as a launch to ‘orbit
or landing, was approximately 2 minutes and required five or six iterations to
obtain five-decimal-place accuracy. Guidance problems, of course, ran much
longer on the machine since they consisted of a series of boundary-value prob-
lems, and convergence of solution was slow when "time-to-go" became small.
Therefore, an open-loop system had to be used for the last portion of the tra-
Jectory.

Guidance Trajectories

The accuracy of guided solutions in simulating the strict optimum is
indicated in figures 4 to 6, and terminal values are presented in tables I to
ITT. TIn these solutions, the true dynamic equations were integrated at a
step interval of 10 seconds, and the analytic solution was used as a feedback
control.

Figures 4(a) to 4(d) are time-history comparisons of the state and control
variables for the guided analytic solution with the optimum for a launch to
lunar orbit. Table I indicates the numerical differences at the boundary.

This trajectory required the use of an open-loop system at a time-to-go of
approximately 9 seconds. The largest apparent deviation in these curves is
in the pitch angle, where there appears to be as much differential area above

15
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(a) Velocity.
Figure 4.~ Optimum launch to lunar orbit. T/WO = 0.6; Isp = 315 sec.
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Figure 4.- Continued.
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Figure 4.- Continued.
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Figure 4.- Concluded.
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as below the optimum. This apparent canceling is the probable cause of the
closeness of the final values of time indicated in table I. It can be ob-
served by examining these curves that the analytic technique has a linearizing
effect on the solution. This appears to be a general characteristic of the

analytic technique.

TABLE I.- LAUNCH TO LUNAR ORBIT

]

[?/WO = 0.6; ISp 315 see; ¥y, = 1,000 ft; v, = 100 ft/sec; Ty = 900}

Optimum, integrated Analytic, guided
By, 8€C . .0 .. 227.92 228.87
Oy deg - . . . . . 27.68 26.68
0, deg . . . . . . -8.25 -8.77
V, ft/sec . . . . 5,775.3 5,807.9
VAT A R 49,958 kg, 062
vy ft/sec . . . . 5,606.7 5,601.9
Ty, deg ... . 0.00084 0.00527
x5, 6. 56k,573 567,082

Figures 5(a) to 5(d) are the time-history comparisons for a guided landing
from lunar orbit. DNumerical results are presented in table II. Optimum retro-
grade solutions are extremely sensitive to initial conditions when solved by
integrating the dynamic and Euler-lagrange equations forward in time. There-
fore, the landing from lunar orbit required a backward integration in time to
obtain a solution. This, in turn, required a weight correction to establish
the correct initial T/WO when the solution converged. These difficulties

were avoided in the analytic solution by solving the retrograde problem in
the forward sense, and only the previously mentioned difficulties were en-
countered. An open-loop solution was initiated at a time-to-go of approxi-

mately 10 seconds.

18
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Figure 5.- Concluded.
TABLE II.- LANDING FROM LUNAR ORBIT
[r/wo = 0.4; Isp = 315 sec; y, = 50,000 ft; v = 5674 .5; Yo = o:]
Optimum, integrated Analytic, guided
tl’ SEC 4 4 o e e 290.02 290.92
eo, deg .« .+ . . 181.87 182.93
el, deg « ¢« ¢ « . . 163,23 164,28
Ve ft/sec . . . . 4 658.9 bk 677.0
T I 15,000.0 14,098.8
vy, ft/sec . . . . 1,113.2 1,114.3
T, deg . . ... -11.13 -11.07
X, T . C e e . 1,019,285 1,022, 94k




Figures 6(a) to 6(d) are the time-history comparisons for a guided in-
sertion into a circular earth parking orbit. Table III presents the numerical
results at the boundary. In this trajectory, velocity to be gained rather
than time-to-go was the terminating criteria. This necessitated thrusting for
an additional 0.13 second to meet the desired end conditions. This shift in
the terminal boundary condition is readily apparent in figure 6(d) where it is
observed that the pitch angle rapidly changes value.

NASA.S-64-280
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Figure 6.- Optimum insertion into a circular earth orbit.
T/Wy = 0.751; Tep = 420 sec.
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Figure 6.- Continued.
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Figure 6.- Continued.
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Figure 6.- Concluded.
TABLE III.- INSERTION INTO A CIRCULAR EARTH ORBIT

[%/WO = 0.751; ISp = 420 sec; Vo = 181,500 ft; Vo = 8,750 ft/sec; Ty = 22.2ﬂ

Optimum, integrated Analytic, guided
ty, sec . ... h17.15 h1g.07
eo, deg « .« . . . . 33.73 32.21
Gl, deg « + o . . . 4,04 1.38
Vc’ ft/sec . . . . 18,537 18,733
Yo £ oo 600,932 600,930
v, ft/sec . . . . 25,570 25,570
Ty, deg o ... 0.0000 -0.0004
X, T8 0L 5,929,025 5,960, 834

ol




Trajectory Scanner

Figure 7 indicates a parametric study in T/WO of landings from
positions off pericynthion. The state variables and performance data for
changes in the true anomaly angle are presented in table IV. A point of
interest in this curve is the small penalty loss in performance for a wide
variation in the true anomaly angle T. For instance, in the case of
T/WO = 0.4, a penalty loss of ANC = 10 ft/sec results for a range of 1
of approximately 50°. For reasonable values of T/WO, this small loss in

AVC indicates that lunar landings may be initiated from a wide range with

only a small penalty in performance.
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Figure T7.- Landings from positions off pericynthion. Isp = 315.0 sec.
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TABLE IV.- LANDINGS FROM POSITIONS OFF PERICYNTHION

[%sp = 315 sec; y; = 1,000 ft3 v, = 100 ft/sec; T, = oi]

VE, ft/sec

M, deg | V, ft/sec Y, deg y, ©t T/wO = 0.3| T/, = o.E'_§7ﬁ;:= 0.5

~46.1 5,524 .6 -1.5472 112,724 5,808.4 5,Th7.3 5,752 .2
-40.6 5,537.1 -1.3949 99,229 [ 5,804.3 5,736.1 5,730.5
-35.1 5,548.3 -1.2298 87,157 5,801.7 5,728.3 5, 1.7
-29.6 5,558.1 ~-1.0534 76,626 5,800.2 5,723.2 5,703,8
-2h.1 5,566.4 - 8677 67,738 5,799.3 5,720.1 5,696.6
-18.6 5,573.1 - 6745 60, 581 5,798.8 5,718.3 5,692,3
-13.0 5,578.1 - b757 55,225 5,798.0 5,TL7.5 5,690.1
.86 5,583.0 .0315 50, 02k 5,798.3 5,718.9 5,691.9
1475 | 5,576.7 .5280 56’695,L_m5’801'5 5,727.8 5,707.1

CONCLUDING REMARKS

Quasi-optimum guidance equations in two dimensions for which constant
thrust was used have been analytically derived by the calculus of variations.
The basis of the analysis is the analytical solution to the flat-body prob-
lem which is extended to simulate a round body by the addition of power series
in time. DNumerical solutions to the resulting transcendental equations have
been generated by using an iterative convergence technique.

Guided trajectories were examined for a landing on and launch from the
lunar surface and for an insertion into earth orbit. The resulting curves for
the control and state variables agree closely with the true optimum and pro-
duce solutions which are more linear than the exact curves. The trajectories
show losses in characteristic velocity of 0.564 percent for the lunar launch,
0.389 percent for the lunar landing, and 1.057 percent for the insertion into
earth orbit. This last trajectory had a terminating criteria on velocity

rather than on time-to-go which had the effect of increasing the thrusting arc.

Manned Spacecraft Center,
National Aeronautics and Space Administration,
Houston, Texas, February 25, 1964
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APPENDIX A

OPTIMUM SOLUTION WITH FUNCTIONS OF THE STATE VARTABLES PRESCRIBED AT A

VARTABLE TERMINAT, TIME, INCLUDING MINIMUM TIME PROCESSES

The material contained in this appendix was taken from a lecture series on
optimization of dynamic systems at Harvard University in 1963.

Given a system of Tirst-order differential equations of the form
N -, —
= i <
g=r [q(t),e_(t),t] q(to) given  t <t <t (A1)

where ait) and §Yt) are the state and control vectors, respectively. It
is desired to minimize some performance index of the Mayer form

I-c [q(tl),tl] (A2)

Certain boundary conditions are desired of the form

ﬁl}l(tﬂ,tlj =0 (A3)

The performance index and the boundary conditions adjoined to the constraint
relationships (eq. (Al)) with Lagrange multipliers produce the integral

t
1 .
I = <G + 7T M>t:tl + f T lr [E)(t),e_)(t),t} - Q) at (Ak)
0

where v are constant Lagrange multipliers and the superscript T refers to
the transpose matrix.

The modified Hamiltonian is defined as

=T o] Ae),500),1] (15)

The differential of (A4) taking into account differential changes in the ter-

minal time tl is
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a1 = (g% s aﬁ)d‘t+ 57——) ?Tga%f—ildq(t

t
. f [BH 53(t) + S B(t) - m.(t)] (46)

0

Integrating by parts and using

ag(e;) = 8a(t,) + %f(tl) dty (A7)

The Lagrange multipliers are chosen such that the coefficients of 8&3

daitl), and dt vanish if ¢ is not defined.

1 1
RT..xTE (49)
T(tl) - (g— + 7T %g) (A10)
=t
<§+?Tg+}l>t=’c =0 (A11)
1

As a result of this choice of A(t) equation (A8) is reduced to
a1 = (X)T 5") + l<aH 55
4 p= E) dat (Al12)
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For a stationary value of I

%I-=X’T%§=o (A13)

For minimum fuel consumption or under the assumption of constant thrust for
minimum time tl, Gl:q(tl),tl] = tl such that

®)...
3 t=tl
& (128
oG
=0
<B_q>t=tl J

For the specific case under consideration, the functions fE?(t),é-)(t),t:l
are

X =u (A15)
y=v (AL6)
u = 3 cos 0 (A7)
g Y .

v o= }:1,— sin § - go (A18)

and the boundary value constraints g [q(tl)’tl:] are

y(tp) - vy =0 (A19)
u(tl) -u =0 (A20)
v(tl) -v; =0 (A21)

where x(tl) is allowed to be free.
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Applying equation (A9), the Euler-lagrange equations are

A, =0 (A22)
Ay, =0 (423)
Ay == Ny (a24)
iu = - (425)

Applying equation (Al3) to obtain the optimum control laws
tan @ = 7\4/7\5 (426)

Integrating equations (A22) to (A25), and using the results in equa-
tion (A26)

A =0 (a27)
Ay = Gy (A28)
Ay = Cy- Ot (A29)
A, =Gy - Cot (A30)
Therefore,
C, - C,t
4 2
tan 9 = 03 Tt (A31)
Applying equation (A10),
Al(tl) =0 (A%2)
%E(tl) = v, (A33)
ABOHJ =vs (A3L)




I II“

From equations (A32) and (A27) it is observed that the constant c,

The optimum control law reduces to

(c4 - Cgt)
s

tan 6§ =

One more boundary condition results from this analysis. Applying
equation (All) along with the condition (Alk)

1T+ Ay + A0+ AT =0
< 2 3 L >t=tl

= 0.

(A36)

(A37)
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APPENDIX B

INTEGRATION OF A SET CF LINEARIZED DYNAMIC EQUATTONS IN WHICH A CONSTANT

THRUST AND A LINEAR TANGENT TAW OF STEERTNG ARE ASSUMED

Given a system of equations des

cribed by
X =u
y=v

sin § =

cos § =

(B1)

(B2)

(B3)

(Bl)

(B5)

(B6)

(B7)

(B8)

(B9)

(B10)



X

1}
=

(—n/’a <8< I{/Q)

(B11)
-1 (:r/2 <pg< 5:1/2)

K

I

it is required to integrate equations (Bl) to (B4) to obtain three simultaneous
algebraic equations. Rewriting equation (BlY),

1
: n .
pdv = W }2 8 bt at =g¢sin p dt (BL2)
n=0
integrating
1 a tn+l
X o n+l pt(n+l)|\
WV - uy - j{j T T [% T s = a2(¢ sec 8 - A) (B13)
n=0
where
=B (v -
A o (uyo VO) + ¢ sec eo (B1k4)

Equation (Bl3) is of the form

v + B(+)y = a(t) (B15)

and has an integrating factor of u—z

Dividing equation (Bl3) by ME and noting the exact differential yields

2

a t a,

a E 1’1 % ) p

b oat v/ - w(n+l) (n+2) |~ p‘2 (¢ sec 8 -A) ) (B26)
n=0

The left side of the equation integrated between the bounds at t =0 and
t =1t is
1
n+2
, i _Eaiiij;___
b yi/”l Yo by (1) (n+2)
n =0

55



The first term on the right is

t by
1 gt a A a _ aAtl
- oA —= = -
2 2 . 2 m
B V! 1

(o)
=

The second term 1is

t 2
o lsecedt_Kr‘Pa? tanel§l+22 3
Al 2 T Z

(a.l+ou z

0] H M tan eo

= Iiip‘ loge(:z + <l + 22>l/2:] -a (l_+z_2)i/_2_
L

2 a, + o, 2

1 2
1 tan @
2k - 20 (o, + a.z 2oz,|:kl+2]§ t
e Y2, 1% + %2 - 2*( ZZ
1 ge or,l+oogz
taneo

tan 6, + K sec 8 sec B
- Ko log < L - l> + Kor,2<sec 90 - —"-—'—l)

. e\tan eo + K sec 90 By

where the following identities are true:

0) =1

It

w(t

o F tanel

U
-
'_J

il
-

a, + o, tan 6
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i

. 1cegral of equation (BL6) is

1 +2
.Y a t n tan 6, + K sec ¢
N 1 v - n+l 1 _ ko 1og 1 1
By 0 L ulZn+liin+2> @ eltan 6, + K sec 9,

+
=
Q

9
> sec eo - sec — |
ul/

. k'l/ N k - al?l aEKk sec @
1 (k o Kkl/
= % - a2 sec 9 ) 1
- A aztl/ul (BLT)
Integrating equation (B3)
t t 1
1 1
_ cos § dt n
U = u, = JF " Jf hn+l t7 dat
0] 0 n=0
- 1/2
1/2 %y k - Qb = asz / sec 8,
- —— = log, RNy, -y (518)
(k - al - QEKR sec ec>”1
Using equation (B18) in (BLT)
o) L n+e tan @, + K sec 8
. + n+l 1 _ A a.t - - Ko 10 S S 1
bojy¥e = ¥y (o+1) (n+3) W Sty By |+%e \ tan 8y *+ K sec 8,
n=0
sec 0 K;lon
1 1
+ Ka,|sec 9. - - <u -u, + Vv > (B19)
2< 0 Wy > P, 1 0 1
where 1 Nl
n+l 1
}: o1l (B20)
Equations (B18), (Bl9), and (Bl3) evaluated at the boundary t =%, constitute
the necessary three algebraic equations in the three unknowns tl’ eo, and el-
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APPENDIX C

FIRST~-GRDER PERTURBATION TECHNIQUE FOR THE SOLUTION

OF TRANSCENDENTAL EQUATTONS

. ( s ) ( )

where the 6, are a set of unknown variables, it is required to determine the

unique set of ej such that equation (Cl) is true. The first-order perturba-

tion equation is:

oF,
i
dF., ~ (F. - (F = .
1~ P ™ Foda 36, (c2)
where m defines the order of correction.
Define the matrix
N aFi
K=a ;= 5-9'5 (c3)
It is desired that
(Fi)m+l =0 (ck)

Using equations (C3) and (C4) in (C2) and solving for the correction term

a, = e -(Fi)m (c5)

The functions Fi(ej> are defined as

1/2. k- opu
F = :__..._H;<u - Uu -+ \lf + log 171 2 —— uad
1 PO, 1 0 1 e ( _ o 1/2
ql - 2Kk sec eo ul
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n+l

1
. &t . (n+1)
Fo = - wdpVy - }: mF 1 [% tut) o gJ + oy sec 0 -

n=0

1 n+2
.2 +1 1 .
Fgz =8 |u¥g - }: Tor1) (ne2) | = MA %ty
tan Gl + K sec el sec el
* Ktpul loge tan'eb + K sec % + Kay(sec eO - ™

Kuo
on; (ul - Y% * IlIl)

where

2
1 n+l
¥ hn+l 1
1 n+1
n=0
it
o = —— 1
2 tan el ~ tan GO
al =1 - a2 tan OO
2 2
k = al + a2
K =1 (- n/2< 0 < n/2)

1 (xn/2< 6 < 3m/2)

=
Il
1

and the ej described previously are tl, eo, and 91.

4)

(c7)

(c8)

(cL0)

(c11)

(c12)

(c13)

(cik)
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The partial derivatives a,. are

1]
a, dk /ot
Bk/at alu - ul Bal/ét ( 1/2 aag/at + / > sec 6
a - -
11 k - alul - Kk / sec 91
ok /ot
1/2 oy Ok/dt;
Bg/atl - Ba%/étl - <Kk Ba%/atl + - ki7—f> sec G .
- — — = p/o
k - al - a2K kl/2 sec eo 1
%> dk dax,,
- 1/2 5 S5t " s
_pk _ < 1 t
ooy K ¥y + <ul ug * ¢1> = 1/ (c15)

ay ok ae
85/560 Bal/ae < aaa/ae + —;;T£i7§—> sec Ol

12 ~ 1/2
k - al“l - a2K k sec Gl
oa. ok /08
dk 1 1/2 1/2 / 0
555 - 568 - a K K sec 6, tan 6, - Kk 8@2 890 + @, Y sec 6
2K k
- 1/2
k - al - a2K k sec eo
.k-1/2 G 3k 8@2
- (ul-uo”fl) Z 35, " 5o, (c16)
@ag 0 0]
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g

-

da. fole? dk /o6
Ak 1 / <1/2 2 1>
= 0 - oK k sec B, tan 6 Kk — + Q, sec ©
A W = B
13 k - al“l - QEK kl/2 sec ©
% da, ) <Kk /o 80&2 ak/ae )Sec )
_ 563 868 l 2K k ;2
k - o - QEK k 1/2 sec eo
Kuk-l/e Ty Ny 8a2
cpon2 up -ty ?S'ez'k'a—el‘ (ca7)
2
a,
=<CP sec 91‘A>W2‘ 2%—%‘“(“"1'“1 05) (c18)
1 1
QL
= (@ sec el - A)SEE - &2 %%— (Cl9)
0] 0
da,
853 = (@ sec 8, )5—g-+ a <% sec 6, tan 6, - %%—> (c20)
1

. o
a = y + o - oA -t A 2 + @
z) TH[M M T 2 1\ 3t 3
. tan el + K sec el
+ou |K loge tah’eo'+ K sec B, + %y Sec

sec 0 6@2 .
+ @u. {\sec 6, - L St - = % v, -
1 0 ul tl @dz 3

o
% - @é—(ul " Yo ¥ qflﬂ
(Pl Sl wl)} (c21)

by
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da, sec 6.\ o,
OA 2 1 2
352'-Ht<259 +Ar>+cpul <seceo ™ >gég
. Ba,l 8@2
- o sec eo - —H—2 <ul - Uy + 1[fl><cx,2 Se. - % 59—-> (c22)
(Pa'g 0] 0
da. sec O 8@2
a55 = - Mtl<@2 gq + A ﬁl>+ CPIJ-l <sec GO - lJ-l )El'
a, . Ba.g ( )
+ (1 -« — tan 6,)sec 6 +HE—(u - + C23
< ™ 1> 1 (Paee(l 0 1>§§I
where
1 n+l
a t
n=0
1 a n+2
n+l 1
% = Z (o+1) (n+2) (ca5)
n=0
1
93 = Z ety (c26)
n=0
1
wB - Z n+l l (c27)
n=0
aor,2
= a,/t (c28)
5.~ %/t
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da,

- | 2
5 <Vo “yo>§5_ + @ sec B
Q, 0
2
. 5@2
5 (Vo - “Yé>59
Q, 1
2
tan 0 5@2
- tan 5 St.
1
aCLE 5

tan ©

0

(c29)

(c30)

(c31)

(c32)

(c33)

(C34)

(C35)

(C36)

(C37)

b1



da

2
%%g = 2(a2 - o ten eo) 55?-- 20, @, sec B, (c38)
da,
Ok 2
gq = 2(0(,2 - a,l tan 90>W1 (C39)

Of the three variables concerned, t,, eo, and 91, only the latter two re-
quire initial guesses to initiate the solution. A minimum value of time-to-go,

tl’ may be computed from the following relationship. The minimum characteris-

tic velocity is:

(Vc>min = |AV , = ¢ log, - (il) (cko)

where AV is the change in the total velocity and c¢ 1is the effective exhaust
velocity. Now,

u(tl) =1+ thl (cl1)

Eliminating u(tl) from equations (CkO) and (Clhl) and solving for tys

<tl> = exp = (ck2)

One more point reguires definition. It is desired that the functions
Fi q.) be driven to O by means of the corrections dq_j as stated in equa-
tion (C4). Since for computers this method is impractical, tolerances (or
errors tolerated) should be defined. Only one tolerance requires definition
since the variables are related by equations (Cll). When the tolerance on

the following tolerances are derived:

time-to-go tl is defined as €,
-1 1
e, = |tan \ (ck3)
0 a,
© t 6. - —-g-msec2 ¢)
an 6, - - O/
Het

ho




(Cl)

b3



1.

2.
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